Напряжение солнечной батареи


Как выбрать солнечную батарею и не пожалеть об этом?

В первую очередь, нужно обратить внимание на технические параметры солнечного модуля. Основные из них перечислены ниже. Также, нужно проверить качество изготовления и отсутствие визуальных дефектов на солнечных элементах, стекле, защитной пленке и раме солнечного модуля. Если вы можете различить качество пайки — то лучше покупать модули с пайкой роботом, а не ручной.

Как определить, какое напряжение у модулей?

Напряжение модуля равно сумме напряжений солнечных элементов в цепочке

В последние годы на рынке появились модули с нестандартным напряжением, которые предназначены для работы в последовательных высоковольтных цепочках. С легкой руки непрофессиональных продавцов солнечных панелей, — как российских, так и китайских, — появилась путаница с указанием номинального напряжения солнечных модулей. Мы дадим несколько советов, как определить, какое напряжение у солнечной панели.

Различают несколько напряжений, которые указываются в параметрах солнечных панелей.

  1. Напряжение в точке максимальной мощности (ТММ). Это напряжение при работе модуля с максимальной эффективностью, т.е. когда он выдает свою пиковую мощность при стандартных тестовых условиях (STC). Это напряжение указывается в спецификациях модулей и на шильдике. Нужно учитывать, что измерить напряжение ТММ не так просто. Более того, очень часто нагрузка или аккумуляторные батареи заставляют работать солнечный модуль при напряжении, отличном от напряжения ТММ (обычно на несколько вольт ниже). Номинальная мощность равна произведению напряжения в ТММ на ток в ТММ.
  2. Напряжение холостого хода. Напряжение холостого хода измеряется на клеммах солнечной панели без нагрузки, т.е. когда ток равен нулю. Это напряжение указывается в спецификациях на солнечных модуль, а также на его шильдике. Напряжение холостого хода важно для определения максимально возможного напряжения, которое может выдавать модуль и солнечная батарея, собранная из нескольких модулей. Используя коэффициент температурной коррекции напряжения можно вычислить максимально возможное напряжение солнечного модуля при низкой температуре. Это напряжение не должно превышать максимально допустимого напряжения контроллера или инвертора.
  3. Номинальное напряжение. Это напряжение используется для классификации и различения модулей. Этот параметр пришел к нам со времен, когда солнечные панели использовались только для заряда аккумуляторных батарей. Это напряжение сейчас не указывается в спецификациях и на шильдике солнечной панели. Параметр номинального напряжения был введен для облегчения подбора солнечных панелей к аккумуляторам. Например, 12В аккумуляторы нужно зарядать солнечной панелью с номинальным напряжением 12В, а 24В АБ — солнечной панелью с номинальным напряжением 24В.Здесь ситуация аналогичная напряжениям, указываемым для аккумуляторов. Как известно, для заряда АБ номинальным напряжением 12В нужно зарядное устройство с напряжением примерно до 15В. Поэтому 12В солнечная панель должна выдавать такое напряжение при различной температуре. Поэтому, даже несмотря на то, что напряжение в ТММ солнечной панели равно 17В, она будет заряжать АБ при 14В, а инвертор питать при 10-15В, но все эти элементы будут иметь номинальное напряжение 12В. Таким образом, для потребителя облегчается задача подбора оборудования, совместимого друг с другом. Такой подход прекрасно работал до появления MPPT контроллеров и сетевых фотоэлектрических инверторов. Не все солнечные батареи теперь используются для заряда аккумуляторов, и даже для АБ необязательно иметь СБ с номинальным напряжением 12В. Технология MPPT (поиска максимальной мощности солнечной батареи) позволяет «отвязать» напряжение СБ от номинальных напряжений инвертора и аккумулятора. Сетевые инверторы и MPPT контроллеры позволили производителям солнечных панелей ориентироваться на размер панелей и их мощность, а не на напряжение. Так появились модули, напряжение которых совершенно не связано с напряжениями на аккумуляторах.

Напряжение солнечной панели определяется количеством солнечных элементов, соединенных последовательно. Каждый солнечный элемент имеет рабочее напряжение чуть менее полувольта. В настоящее время есть модули с количеством элементов 36,48, 54, 60, 72 и 96. Наиболее распространены модули с количеством элементов 36, 60 и 72. На 48, 54 и 96 элементов встречаются гораздо реже. В таблице ниже приведены основные напряжения этих солнечных панелей.

Номинальное напряжение, В1216202432
Напряжение в ТММ1, В17-1923-2529-3133-3647-50
Напряжение холостого хода, В21-2229-3037-3942-4557-60
Напряжение заряжаемых аккумуляторов2, В12  24 

1ТММ — точка максимальной мощности2имеется ввиду возможность заряда при соединении к аккумулятору напрямую или через ШИМ контроллер. Остальные модули можно использовать для заряда аккумуляторов, но при обязательном наличии MPPT контроллера.

При покупке модулей для автономной системы с аккумуляторами обращайте внимание на напряжение модуля. В последнее время массово производятся модули высокой мощности (220-270 ватт) с нестандартным номинальным напряжением 20В (с 60 солнечными элементами). Такие модули обычно используются совместно с сетевыми фотоэлектрическими инверторами или с MPPT контроллерами заряда. Если вы хотите удешевить систему за счет менее дорогого ШИМ контроллера, выбирайте модули с номинальным напряжением 12 В или 24 В (соответственно с 36 и 72 солнечными элементами в цепочке).

Температурная коррекция напряжения

Напряжение при возможных низких рабочих температурах модуля важно знать, для того, чтобы правильно подобрать солнечный контроллер или инвертор. Как известно, напряжение солнечной батареи растет при понижении температуры. Температурный коэффициент обычно указывается в спецификациях солнечного модуля.

На что обращать внимание при выборе солнечных модулей для вашей системы солнечного электроснабжения?

Цена против качества

Кроме того, что не все производители и солнечные модули одинаковы (это обсуждается в соответствующей статье, посвященной качеству солнечных элементов), есть еще ряд параметров и факторов, на которые следует обратить внимание при принятии решения о покупке и при выборе поставщика. Только лишь цена на модули не должна быть определяющим фактором.

Проблемы и ухудшение параметров солнечных модулей может быть вызвано следующими факторами:

  • Качество солнечного элемента — его эффективность может быть разной. Это зависит от множества его параметров — шунтового и последовательного сопротивлений, шумовых токов, обратного сопротивления и т.д. Многое зависит от качества производства солнечного элемента и качества применяемых при его производстве материалов и оборудования. Известны проблемы практически на каждом этапе производства элемента — начиная от качества применённого кремния, до качества применяемых контактных паст и припоя. Мы в данной статье не будем рассматривать эти проблемы, это предмет для отдельной большой статьи.
  • Качество пайки солнечных элементов. При некачественной пайке возможен локальный перегрев контакта и его прогорание. Лучше выбирать модули, в которых элементы спаяны роботом — в них разброс качества пайки будет минимальным
  • Качество EVA пленки, которая расположена между элементами и стеклом. Старение кристаллических солнечных модулей в основном связано со старением и помутнением этой пленки. Некачественная пленка может начать мутнеть и разрушаться уже через несколько лет. Хорошая пленка будет служить 30 и более лет, при этом ее помутнение (и, следовательно, потеря мощности модулем) не будет превышать 25-30%
  • Качество герметизации модуля и качество задней защитной пленки. Задняя пленка защищает модуль от попадания влаги. В любом модуле происходит диффузия влаги через пленку. Если качество пленки хорошее, то вся влага, которая попадает внутрь модуля, при его нагревании на солнце, выводится наружу. Если же пленка некачественная, то влаги попадает больше, чем может выйти при нагреве, остаточная влага накапливается внутри модуля и разрушает контакты и контактную сетку элементов. Это приводит к преждевременному выходу модуля из строя.
  • В последнее время появились солнечные модули с двойным стеклом, т.е. вместо задней защитной пленки применено стекло. Такие модули имеют ряд преимуществ. Подробнее об этих модулях можете прочитать в статье про DoubleGlass модули.
  • Качество алюминиевой рамы. Здесь все понятно: некачественное анодирование может приводить к окислению рамки и ее коррозии. К счастью, этот дефект больше визуальный и вряд ли приводит к преждевременному выходу модуля из строя. Хотя, в некоторых случаях (например, при установке модулей на мачтах, где возможны сильные ветровые нагрузки или там, где среда агрессивная) ускоренная коррозия металла может приводить к его разрушению под нагрузками.

Под толерансом подразумевается отклонение реальной мощности модуля от паспортной. Толеранс может быть как положительным, так и отрицательным. Например, модуль c паспортной мощностью 200 Вт может иметь мощность 195Вт; это будет означать, что данный модуль имеет отрицательный толеранс. Положительный толеранс означает, что солнечная панель не только гарантированно будет иметь при стандартных тестовых условиях выходную мощность 200Вт, но и даже больше. Про важность этого параметра читайте в наших «8 Правилах по выбору солнечной батареи»

Температурный коэффициент отражает, какое влияние на выходные ток и напряжение модуля будет иметь повышение или понижение температуры модуля. Как известно, напряжение и мощность модуля при повышении температуры уменьшаются, а ток повышается. Чем меньше температурный коэффициент изменения мощности, тем лучше.

C этим понятно — чем больше КПД, тем меньшая площадь модулей потребуется для генерации одинаковой мощности и энергии.

Еще один параметр, на который нужно обращать внимание — общее количество энергии, которое может было затрачено при производстве солнечного модуля — от добычи кремния до доставки до магазина готовой продукции. Этот параметр отражает, насколько энергоемким было производство модуля и насколько быстро солнечный модуль выработает такое же количество энергии, какое было потрачено на его производство (так называемая окупаемость о энергии).

Заявленный срок службы солнечной панели важен по нескольким причинам. Он может отражать уверенность производителя в качестве произведенной продукции. Солидные производители имеют гарантию 25 лет на 80-90% мощности модуля, а также 5 и более лет на механические повреждения.

Однако, нужно учитывать, что гарантия действует до тех пор, пока существует производитель или импортер. Здесь уже «как карта ляжет» — в последние годы из солнечного бизнеса ушли компании, которые, казалось, будут в нем еще очень долго. Но тем не менее, общее правило остается — покупайте у продавцов и производителей, которые давно на рынке и устойчиво «плывут» в бурном потоке рынка. А это сделать можно только, если в команде профессионалы (это мы скромно так на себя намекаем 🙂 ). Так как мало кто покупает модули напрямую от производителя, важно правильно выбрать продавца или установщика, которые обеспечат вам правильный выбор и режимы работы вашей системы солнечного электроснабжения.

Стоимость модуля зависит от его мощности прямо пропорционально. Однако, чем больше единичная мощность модуля, тем меньше будет его стоимость за ватт. Поэтому, если вам нужна определенная мощность, то лучше ее набрать большими модулями, чем маленькими — это будет и дешевле, и надежнее, т.к. у вас будет меньше соединений. Также, стоимость за ватт модулей со стандартным напряжением 12/24В (количество элементов в модуле 36 или 72) обычно выше, чем с нестандартным количеством элементов в модуле 48, 54 или 60. Для последних при заряде аккумуляторов нужен более дорогой MPPT контроллер.

Тип солнечных элементов, примененных в модуле, также определяет его размер. Поэтому сначала посчитайте, какая мощность вам нужна для снабжения энергией вашей нагрузки, потом посмотрите, хватит ли вам места для размещения такого количества модулей. Может потребоваться выбрать более дорогие, но более эффективные модули, для того, чтобы обеспечить все ваши потребности в энергии. Не забывайте, кстати, что перед проектированием системы солнечного электроснабжения нужно принять все возможные меры по энергосбережению (об этом уже писалось на других страницах нашего сайта).

Пиковая мощность всех модулей измерена при стандартных тестовых условиях: Масса воздуха AM=1.5, радиация E=1000 Вт/м2 и температура фотоэлектрического элемента Tc=25°C. Такие условия при реальной работе модулей не существуют — модули нагреваются обычно до 40-60 градусов, освещенность почти всегда ниже 1000 Вт/м2 (исключение составляют морозные ясные дни). Поэтому многие производители также дают характеристики модулей при NOCT (normal operation conditions) — обычно для температуры модуля 45-47С и освещенности 800 Вт/м2, при этом выработка модулей примерно на 25-30% ниже пиковой. В морозный ясный день выработка модулей может доходить до 125% от пиковой.

Тип солнечных элементов — монокристаллические, поликристаллические, аморфные и др.

Основные типы солнечных элементов, которые сейчас массово продаются на рынке ( первые 3  кремниевые, которые составляют львиную долю рынка), следующие:

  • монокристалллические. Имеют наибольшую эффективность и удовлетворительные температурные коэффициенты
  • поликристаллические. В настоящее время наиболее популярные, т.к. имеют меньшую стоимость за ватт при примерно таких же характеристиках, как монокристалллические. Последние улучшения в технологии поликристаллических модулей брендовых производителей привели к тому, что их параметры могут быть даже лучше, чем у монокристаллических модулей noname производителей/сборщиков панелей.
  • аморфные (тонкопленочные). Используют наименьшее количество кремния. Имеют примерно в 2 раза меньший КПД по сравнению с кристаллическими модулями. К преимуществам можно отнести низкий температурных коэффициент (т.е. при нагревании мощность таких модулей падает незначительно) и большую чувствительность при низких освещенностях.
  • CIGs — тонкопленочные модули из кадмий-индий-галлий теллурида. Многообещающая технология, но массового распространения пока не получила. Делают таки модули всего несколько производителей, и цен на них за ватт обычно выше, чем на массово выпускаемые модули из кристаллического кремния

В последние годы появились солнечные модули, изготовленные с применение новых технологий: PERC, гетероструктурные и т.п. Они имеют больший КПД и улучшенную эффективность. Пока их стоимость превышает стоимость стандартных кристаллических модулей с токосъемными шинами, но технология совершенствуется и рынок постепенно переходит на новые типы модулей, цена которых снижается.

Какие же модули, из перечисленных выше, работают лучше? В последнее время появилось много мифов и необоснованных заявлений насчет того, что какой-то из этих типов модулей работает лучше, чем другие. Некоторые уверяют, что поликристаллические элементы лучше работают при низкой освещенности и в пасмурную погоду. Другие утверждают то же самое, но для монокристаллических элементов. Я даже слышал версию, что поликристаллические элементы лучше преобразуют рассеянный свет, потому что кристаллы в них «повернуты в разные стороны». На тему «что лучше — моно или поли» у нас есть специальная статья.

Анализ результатов тестирования сотен модулей показывает, что модуль хорош не тот, который моно или поли, а тот, который сделан качественно. Результаты тестирования модулей по PTC (которые ближе к реальным условиям эксплуатации модулей) показывают, что некоторые монокристаллические лучше, чем некоторые поликристаллические, а некоторые поликристаллические лучше чем некоторые монокристаллические. Этот факт также подтверждают многочисленные результаты сравнений модулей конечными пользователями — можно найти как «доказательства» преимуществ моно перед поли, так и преимуществ поли перед моно. Однако большинство монокристаллических модулей немного лучше работают при нагреве — это подтверждает анализ большого количества данных по PTC мощности солнечных модулей различных производителей. Для иллюстрации этого факта мы провели сравнили мощности монокристаллических и поликристаллических модулей одних и тех же производителей (см. таблицу).

Что является фактами, так это следующее:

  1. Монокристаллические модули обычно имеют бОльший КПД при STC, т.е. можно получить больше мощности с единицы площади солнечной батареи при ярком солнце.
  2. Монокристаллические модули имеют меньшую деградацию со временем.
  3. Монокристаллические модули дороже за ватт.
  4. На эффективность стандартных модулей в общем случае влияет количество токосъемных шин. Чем их больше, тем лучше работают солнечные элементы. Солнечные элементы с 3 шинами (busbars) постепенно вытеснены элементами с 4 шинами, а в последнее время появились модули и с 5BB. Эффективность их выше, чем у элементов с 3 или 4 шинами, но сравнивать при этом нужно элементы производителей одинакового уровня. Хороший (брендовый, Tier1) производитель делает модули с 3BB элементами лучше, чем noname или Tier3 c 4BB или 5BB.
  5. Солнечные элементы, изготовленные по новой технологии (PERC, гетероструктурные и др.) имеют КПД примерно на 10-15% выше. Т.е. в размере стандартного 250-260Вт модуля можно получить до 320Вт. Такие модули выпускают, например, российский Хевел или китайский Seraphim

Так что еще раз повторим — если хотите получить модули с прогнозируемыми параметрами — покупайте брендовые, с указанием реального производителя. Этот производитель должен быть в списке протестированных независимыми лабораториями или рекомендован независимыми агентствами. Мы уже давали ссылки на статью в журнале PV magazine со списком рекомендованных китайским правительством производителей для фотоэлектрических проектов в Китае. Вот еще одна ссылка — тесты калифорнийского агентства California Energy Commission, где приведены данные по большому количеству протестированных независимыми лабораториями модулей. В Европе также проводятся независимые тестирования солнечных панелей. Самая известная лаборатория — TUV — также имеет базу данных солнечных панелей различных производителей, поищите предлагаемый вам модуль в этой базе.

Если в этих списках есть производитель предлагаемых вам модулей — это уже хорошо. Вы можете получить по ним данные независимымых измерений, а не только заявленные продавцами или производителями параметры. Мелкие, «коленочные» производители обычно не попадают в такие списки. Модулей ФСМ и многих прочих продаваемых в России под собственными брендами китайских модулей, как вы можете догадаться, там нет. К сожалению, нет там и  производимых в России модулей — для зрелых рынков США и Европы российская продукция не представляет интереса. Поэтому, определить реальные параметры российских солнечных модулей пока нет возможности.

Эта статья прочитана 11756 раз(а)!

Продолжить чтение

  • Интересные ссылки по солнечным батареям
  • Китайские солнечные модули. Выбор.
  • Срок службы солнечных батарей
  • Зачем нужны солнечные батареи?
  • Как выбрать СБ? Руководство для покупателя

www.solarhome.ru

Статьи по теме

Солнечные батареи можно купить для электроснабжения частного дома, дачи или другого помещения. Сложность их выбора состоит в необходимости создания сбалансированной системы из разных элементов. К ним относятся: фотопанели и аккумулятор, инвертор и контроллер.

Оглавление:

Как устроена и работает солнечная батарея

Солнечная батарея представляет собой независимый источник электроэнергии. Устройство состоит из ряда полупроводников, которые преобразовывают солнечное излучение в ток. Размер поглощающих панелей варьируется от пары миллиметров до нескольких метров.

Батарея состоит из двух слоев с разной проводимостью. Солнечная энергия выбивает электроны из катода и они попадают в пустоши анода. Получается их круговорот. Исторически первым фотоэлементом был селен. Но его производительность была низкой.

В 1954 представители телекоммуникационной компании США предложили заменить его кремнием. И уже через 4 года был запущен спутник на фотоэлементе из него. Эффективность монокристаллического материала составляет 17 %, а поликристаллического – 15 %.

Со времен производства первых солнечных батарей их стоимость существенно упала.

Для продолжительности срока службы, устройства элементы шунтуются диодами. Что уменьшает итоговое сопротивление цепи. Обычно их размещают на каждой четверти длины батареи. Такая конструкция особенно важна, когда часть панелей находится в тени. Диоды не позволяют превращаться им в потребителей тока.

Накапливаемое электричество сохраняется в аккумуляторе. Напряжение которого меньше, чем поступающий потенциал. Процесс заряда и его скорость проверяется специальным контроллером.

Эффективными считаются свинцовые и гелевые устройства для накопления энергии. Срок их эксплуатации составляет 10 - 15 лет.

Избыточный ток поглощает резистор. Для преобразования постоянного напряжения в переменное используют инверторы.

Производительность солнечной батареи зависит от угла ее наклона и стороны света, в которую она направлена. Так, максимальный результат будет от такого размещения устройства:

  • на юг под углом в 30° - эффективность 100%,
  • на юго-восток/юго-запад под углом 30° - 93%,
  • на восток/запад под углом - 93°.

Преимущества и эффективность автономных устройств

Покупают солнечные батареи для дачи, частного дома, отелей в курортных городах. Пользователи отмечают ряд их конкурентных преимуществ:

  • неисчерпаемость источника энергии,
  • общедоступность в любой местности,
  • экологическая безопасность,
  • бесшумность системы,
  • длительный срок службы до 25 лет,
  • государственная поддержка развития альтернативных источников электроэнергии в Европейских странах,
  • возможность монтажа дополнительных панелей для расширения системы,
  • малая вероятность поломки,
  • бесплатность самой энергии,
  • автономность системы.

Недостатки солнечных батарей для дома

Использование солнечных батарей сопровождается рядом недостатков:

  • высокая стоимость системы,
  • необходимость разового вклада большой суммы,
  • низкая производительность по сравнению с традиционными источниками питания,
  • необходимость места для размещения дополнительных комплектующих,
  • длительный срок окупаемости,
  • необходимость постоянного ухода,
  • проблемы утилизации батарей,
  • вероятность кражи дорогостоящего оборудования,
  • неэффективность в зимнюю, туманную и пасмурную пору.

Когда солнечные батареи целесообразны

Стоимость автономного энергоснабжения зависит от ее мощности и производительности. И чем она больше, тем меньше цена единиц ее составляющих.

Мощные солнечные батареи можно купить от 330 до 530 у.е. Для того, чтобы обеспечить электроэнергией дом на 4 человека потребуется вложиться на 15 – 25 тыс. у.е.

В Западной Европе спрос на альтернативные источники питания выше, поскольку там достаток людей выше. К тому же, есть возможность передачи накопленной энергии в общую сеть. При этом закупочная цена со стороны государства выше, чем тарифы при потреблении.

Целесообразно использовать мощность солнечных батарей при недостатке электроэнергии в регионе. Например, в курортном городе, где в «сезон» вводятся ограничения потребления.

Или же дом находится вдали от источника питания. И прокладка сети проводов дороже, чем стоимость батарей.

Лучше использовать энергию солнца, когда ее поступление не закрывают туманы и плохая погода. Например, на юге страны на возвышенности.

Для большей эффективности солнечной батареи следуйте инструкции установки, которая идет от производителя.

Режимы автономного электроснабжения

При выборе системы солнечного источника питания, необходимо учитывать максимальную силу, требуемую от нее. Она вычисляется суммированием мощностей всех бытовых инструментов и других электропотребителей. Также надо определить среднесуточную норму. Она зависит от режима автономности от общей сети.

Полная замена привычного источника питания, сопровождается отключением от городского электроснабжения. Требуемое количество мощности определяется по показателям счетчика за предыдущие периоды. При этом целесообразно учитывать возможных будущих электрических потребителей, задел на которые лучше сделать заранее. Обычно необходимо не менее 600 кВт в месяц для обеспечения дома на 3 – 4 человека.

При частичном электроснабжении, основная мощность идет от сети, остальная – от солнечных батарей. Приборы, устройства и системы, требующие больше 2 кВт/ч или 5 кВт/сутки остаются на традиционном источнике питания. Например, пол с подогревом, электрический бойлер, стиральная машина, обогреватель, утюг. Для такого режима потребуется 2 – 2,5 кВт/ч.

Умеренное электроснабжение меняет привычный стиль жизни. Емкие работы, как большая стирка, выполняются периодически 1 – 2 раза в месяц. В период высокой активности солнца. Нагрев воды также ограничивается до почасовой подачи. Для системы необходимо 150 кВт в месяц при возможном среднем потреблении энергии в 4 – 6 кВт/ч. Пиковая мощность может достигать 10 кВт/ч.

При базовом режиме используется 100 кВт в месяц. Хозяева находятся в состоянии экономии энергии, постоянно контролируют включение света и других потребителей тока. Работы, требующие большой мощности, проводятся до обеда. Чтобы до вечера аккумулятор накопил достаточное количество заряда.

Аварийный режим используется в экстренных ситуациях и в течение нескольких дней. После, предполагается восстановление привычного уровня электроснабжения от сети. Используется для обеспечения основных надобностей жителей дома. Среднее потребление энергии в сутки не превышает 2 кВт при пиковом значении в 6 кВт/ч.

После определения уровня требуемой энергии можно приступать к выбору конкретной системы солнечных батарей.

Выбор панелей солнечных батарей

Солнечные батареи имеют такие характеристики:

  • размер,
  • материал изготовления,
  • мощность,
  • напряжение номинальное и при пиковой мощности,
  • ток при максимальной мощности,
  • сила тока при коротком замыкании,
  • диапазон рабочей температуры,
  • срок эксплуатации.

При выборе фотоэлементов необходимо учитывать все вышеперечисленные показатели.

Для достижения необходимого уровня напряжения, панели параллельно соединяются в блоки. Важно понимать, что для объединения используются однотипные элементы. Но, если выбор между большой батареей или парой маленьких, то лучше отдать предпочтение первому варианту. Поскольку в нем отсутствуют дополнительные соединения, что увеличивает надежность конструкции.

Обычно размеры панелей составляют 1 – 2 м² при мощности в 220 – 250 Вт.

Современные батареи изготавливают из кремния.

Сколько стоит солнечная батарея зависит от ее типа. Фотопанели бывают моно- и поликристаллические. Первые, отличаются большей эффективностью на уровне 17,5% при сравнительном показателе в 15% аналога. Но их стоимость выше. Но в готовой конструкции при пересчете получаемой энергии на затраты, стоимость 1 Ватт приблизительно равна. Срок эксплуатации панелей одинаковый. А вот активность солнца отличается не постоянством в разные периоды года. Поэтому предпочтительней приобретение монокристаллических фотоэлементов.

Номинальное напряжение является показателем, на который рассчитано устройство в условиях нормальной работы. При этом максимальное - выше на 5 – 10 %.

В случае с солнечными батареями отдайте предпочтение 24-х вольтовым панелям. Больший показатель встречается редко. А устройства на 12 В предназначены для малых систем. Их обычно используют по архитекторским соображениям, когда ограничено пространство под батарею.

Установка способна работать при определенной температуре. Оптимальным решением является диапазон от -40°С до +90°С.

По отзывам потребителей, солнечные батареи исправно функционируют в течение 20 – 25 лет. При этом их эффективность снижается на 7 – 8 % каждые 10 лет.

Выбор контроллера и инвертора

Контроллер монтируется между солнечной батареей и аккумулятором. Он управляет уровнем напряжения, идущего от фотопанелей, в зависимости от уровня заряда накопителя энергии. Так при 100% накопления, предупреждается перезаряд отключением подачи напряжения в аккумулятор.

Дорогостоящие технологии отслеживают изменение входящих потоков и балансируют их. Так достигается максимально возможная продуктивность батарей в любой период суток и времени года. Контроллеры Maximum Power Point Tracking целесообразно использовать в больших системах. А при обеспечении энергией частного дома достаточно упрощенной модели. Например, типа PWM.

Такие устройства при уровне заряда аккумулятора от 80% уменьшают напряжение солнечной батареи и поддерживают его. Для сравнения контроллеры ON/OFF, которые являются самым дешевым аналогом, просто отключают систему.

Также важно, чтобы контролирующий блок мог компенсировать температуру и предполагал выбор типа аккумуляторной батареи.

Производители солнечных батарей при отказе от контроллера рекомендуют постоянно измерять вольтметром заряд аккумулятора. И при необходимости вручную отключать систему. Поскольку при перезаряде уменьшается срок службы накопителя.

Инвертор преобразует постоянное напряжение в переменное. Показатель входного напряжения должен соотноситься с мощностью устройства. Так при его силе в 600 Вт достаточно U = 24 В, и соответственно 48 В при большей мощности.

Если говорить о видах инвертора, то меньше всего хлопот доставит синусоидальное устройство.

Косвенным показателем является вес оборудования. Поскольку трансформатор отличается значительной массой, то условно на 100 Вт идет 1 кг инвертора. И поэтому качественный преобразователь в 1000 Вт весит 8 – 10 кг.

Номинальная выходящая мощность должна равняться силе всех электрических потребителей.

Выбор аккумуляторов

Аккумулятор стоит выбирать, исходя из количества энергии, которое он будет накапливать. Для этого определяется суточная потребность в энергии на разные потребители. При этом делается корректировка в дополнительные 10% на потери преобразования в инверторе.

Если солнечные батареи будут автономным источником питания, то важно максимальное возможное количество заряда аккумулятора. А при резервном или аварийном режиме системы необходимо отдавать предпочтение аккумуляторам с большим сроком службы.

Стартейные батареи нуждаются в постоянном обслуживании и используются при малой силе системы. Гелевые аналоги не так требовательны в уходе и способны накапливать больше энергии. Герметичные и заливные аккумуляторы обеспечивают длительное время работы при высоких мощностях. AGM используются преимущественно для резервного режима энергосбережения.

При одинаковых характеристиках, лучшими реальными показателями будет обладать более тяжелый аналог.

Обслуживание солнечной батареи

Солнечные батареи требуют большего ухода, чем стационарная сеть. Их поверхность надо систематически очищать от загрязнений. Таких как, птичий помет, пыль, следы от осадков. Так как загрязненные панели поглощают меньше солнечной энергии.

Для чистки достаточно помыть их потоком воды из шланга. А для снятия снега использовать палку по типу старой швабры с резиновой прослойкой.

Также необходимо обрезать ветки деревьев, которые кидают тень на поверхность батарей. В идеале лучше, чтобы в прилежащей территории дома высоких насаждений не было вовсе.

Два раза в год проверяйте состояние креплений системы. При необходимости смените их.

strport.ru

Главные показатели солнечных батарей

Солнечные электростанции, в основу работы которых положен принцип прямого преобразования энергии солнечного излучения в электричество, заняли прочные позиции в общей системе энергообеспечения Земли. С каждым годом мощности этих энергоустановок растет.

Если в 2004 году доля электричества, производимого всеми гелиевыми электростанциями, составляли 0.01% от общего производства электричества на Земле, то через десять лет, в 2014, эта доля уже составляла 0.79%.

Для сооружения таких электростанций требуется огромное количество кремния – основного полупроводникового материала, который вырабатывает электрический ток при облучении его солнечным светом. С точки зрения эффективности наиболее подходящим для этой цели является чистый монокристаллический кремний.

При сборке каждого модуля – независимо от того, предназначен ли этот модуль для установки в мощной промышленной электростанции или в маленькой домашней – большое внимание уделяется качеству каждой ячейки. Размеры ячеек в различных модулях могут быть различными, но в одном модуле все ячейки должны быть строго одного типоразмера. Дело в том, что мощность модуля находится в прямой зависимости от качества каждой ячейки и ее характеристик.

Важнейшим параметром является вольт-амперная характеристика солнечной батареи. В сущности, речь идет о параметрах каждой отдельно взятой ячейки, входящей в состав батареи. Ведь мощность модуля в целом – это суммарная мощность ячеек, из которых он состоит.

В общем случае вольт-амперная характеристика (ВАХ) – это зависимость тока, протекающего через электрическую цепь от напряжения, приложенного к этой цепи. В случае солнечной батареи эта характеристика рассматривается при наличии дополнительных условий, которые в мировой практике были стандартизированы и применяются сейчас при проектировании всех подобных систем во всем мире. Согласно этим стандартам ВАХ солнечных элементов определяется при мощности излучения солнца равной 1000 ватт на один квадратный метр. При этом температура элементов должна быть равна +25°С, а измерения должны производиться на широте 45°.

Вольт-амперная характеристика солнечной ячейки

На графике обозначены важнейшие точки вольт-амперной характеристики полупроводникового фотопреобразователя – Uxx и Iкз.

Для определения рабочих параметров ячеек на этом же графике показана кривая, характеризующая мощность исследуемого фотоэлектрического элемента. Этот график является функцией мощности ячейки в зависимости от нагрузки. Из графика следует, что номинальная мощность того или иного элемента определена как максимально возможная мощность при стандартных исходных параметрах. Напряжение, при котором достигается максимальная мощность, является рабочим напряжением и обозначается Up. Соответственно ток, соответствующий максимальной мощности, является рабочим и обозначается Ip.

Понятно, что при нулевых значениях тока или напряжения система не работает, мощность равна нулю. Система в работе, когда ток и напряжение достигают величин, сопоставимых с их рабочими значениями. При этом, как правило, модуль набирается из большего количества ячеек, чем это необходимо для получения рабочего напряжения.

Например, для получения значения рабочего напряжения 12 вольт набирается такое количество элементов, чтобы на выходе модуля получить напряжение в 16 – 17 вольт. Это делается для того, чтобы скомпенсировать падение рабочего напряжения из-за нагрева элемента под воздействием солнечных лучей.

Дело в том, что у кремниевых полупроводников напряжение холостого хода уменьшается на 0.4% при увеличении температуры ячейки на 1°С. В то же время значение тока короткого замыкания увеличивается на 0.07% при увеличении температуры на 1°С.

Если освещенность ячейки меняется, то прямо пропорционально степени освещенности изменяется и значение тока короткого замыкания. В то же время изменение освещенности практически не сказывается на величине напряжения холостого хода. Эффективность солнечной ячейки вычисляется как отношение значения максимальной мощности ее к значению общей мощности излучения солнца, определенной по международным стандартам (STC).

Зависимость мощности и напряжения солнечной батареи от температуры

Чтобы получить необходимые рабочее напряжение и требуемую мощность, фотоэлектрические элементы соединяются в электрические цепи. Эти цепи могут быть последовательными или параллельными. При соединении нескольких ячеек в единую электрическую цепь и получают солнечную батарею. При этом выходная мощность батареи всегда оказывается меньше значения арифметической суммы мощностей ячеек, из которых составлена сама батарея. Это обуславливается потерями, возникающими из-за рассогласования характеристик однотипных ячеек.

Как было сказано выше, для каждой солнечной батареи подбираются ячейки с максимально приближенными характеристиками. Как физическими (типоразмеры), так и электрическими (вольт-амперные характеристики). Чем более строго производятся контроль и подбор элементов для каждого солнечного модуля, то есть чем меньше разброс характеристик, тем выше электрические показатели всего модуля, тем выше его мощность.

Проведенные исследования показали, что если последовательно соединить десять элементов, имеющих разброс характеристик до 10%, то потери мощности составят около 6%. Если ужесточить отбор и снизить разброс характеристик до 5%, то потери мощности уменьшатся до 2%.

В процессе эксплуатации солнечной батареи может возникнуть ситуация, когда один или несколько элементов будут затенены. В этом случае при последовательном соединении затененные ячейки будут рассеивать мощность, которую производят ячейки, получающие световое излучение в полном объеме. При этом затененные элементы будут быстро нагреваться и в конечном итоге выйдут из строя. Это, естественно, увеличивает нагрузку на исправные цепи, что приводит к неисправности всей солнечной батареи. Чтобы это не происходило, параллельно каждой ячейке (или группе последовательно соединенных ячеек) подключается байпасный диод.

И, наконец, еще одна точка на графике. Это точка МРР – точка максимальной мощности. Мощность всех солнечных модулей определяется всегда именно по этой точке. И контроллеры МРРТ заряда аккумуляторов работают в режиме отслеживания точки МРР при всех режимах зарядки аккумуляторов, а не на последнем, что повышает их эффективность.

В этой точке напряжение выше номинального, поэтому заряд аккумуляторов происходит быстрее, чем при использовании контроллеров других типов (например, работающих на принципе широтно-импульсной модуляции). Тем самым при использовании контроллера МРРТ количество электроэнергии, полученной от одного гелиевого модуля на 10% - 30% больше, чем при использовании контроллера ШИМ (при равном количестве солнечного излучения).

В современных технологических линиях по производству ячеек для солнечных батарей на всех этапах изготовления установлены тонко юстированные приборы, следящие за качеством изделий. Точно такому же строжайшему контролю подвергаются и все электрические характеристики изготовленных элементов. Только при таких условиях собранный гелиевый модуль в состоянии вырабатывать именно ту мощность, которая была рассчитана при его разработке.

solarb.ru

Как выбрать солнечные батареи для дома – расчет системы

Содержание:

С развитием технологий у потребителей появилась возможность получать электричество от солнечной энергии. Причем солнечные батареи может приобрести практически каждый желающий. Особенно популярны такие приспособления у владельцев дач и загородных домов, расположенных вдалеке от линии электропередач. Далее в материале мы рассмотрим, что такое солнечные батареи для дома, по какому принципу они функционируют, как рассчитать их мощность и каким образом такие устройства можно установить.

Что это такое

Процесс генерирования электричества из частиц солнечного света – фотонов – в перечне природных компонентов называется фотоэлектрическим эффектом. После открытия данного физического явления встал вопрос о том, как его можно контролировать. С этой целью были созданы специальные компактные электронные приспособления – фотоэлементы, в основе которых содержатся полупроводниковые материалы.

На промышленном производстве нашли способ объединить микроскопические преобразователи в достаточно большие и эффективные панели. В частности, КПД кремниевых модульных гелиопанелей, которые в больших объемах выпускаются современными предприятиями, составляет 18-22 %.

Солнечная батарея состоит из нескольких таких модулей. Через нее солнечные фотоны подаются в электрическую цепь в качестве частиц постоянного тока. Далее они распределяются по аккумулирующим устройствам или трансформируются в заряды переменного тока с напряжением в 220 вольт. Полученная энергия позволяет питать домашние электроприборы.

Разновидности солнечных модулей для дома

Модульные гелиопанели состоят из фотоэлектрических преобразователей. На производстве выпускают два вида таких устройств.

Различие между преобразователями состоит в разновидности кремниевых полупроводников:

  • Поликристаллические. Получают такие фотоэлементы путем длительного охлаждения кремниевого расплава. Хотя данная технология существенно удешевляет процесс производства и делает изделия более доступными для покупателей, их эффективность не превышает 12 %.
  • Монокристаллические. В данном случае речь идет об искусственном выращивании кристаллов кремния, которые затем нарезают на тонкие пластины. Этот способ считается наиболее затратным, однако он обеспечивает более высокий коэффициент полезного действия. Среднее значение его колеблется в пределах 17 %, однако встречаются фотоэлементы на монокристаллах и с более высокими показателями.

Фотоэлементы на поликристаллах имеют плоскую квадратную форму и поверхность с неоднородной структурой. В то же время, монокристаллические солнечные элементы обладают однородной структурой поверхности и формой в виде квадрата со срезанными углами.

При равной мощности солнечных батарей для дома первый вариант панелей имеет большие размеры, чем второй, поскольку они менее эффективны. Хотя стоимость поликристаллических панелей примерно на 10 % ниже, за что они и пользуются популярностью.

Схема электропроводки от гелиопанелей

Чтобы понять, каким образом солнечная электроэнергия для дома попадает в электросеть и питает бытовые приборы, стоит рассмотреть схему работы солнечного оборудования. Несмотря на кажущуюся сложность, принцип действия схемы является достаточно простым и состоит из четырех этапов.

Солнечные панели являются первым компонентом электрической схемы. Они собираются из заданного количества пластин фотоэлементов в прямоугольные тонкие модули. Мощность фотопанелей может быть разной, однако она всегда делится на 12 вольт.

Для улавливания фотонов плоские панели размещают на открытых для солнечного света пространствах. Мощные солнечные батареи для дома получаются после объединения модульных блоков между собой. Такая батарея предназначена для преобразования солнечной энергии в постоянный ток.

Аккумуляторы служат для накопления электроэнергии, полученной от солнца. В данном случае, если бытовые приборы в доме были подключены к центральной электросети, то генерируемая солнечная энергия накапливается в аккумулирующих устройствах. Кроме того, они запасают излишнее количество электроэнергии, поступающей с гелиопанелей, которая не расходуется в полном объеме.

Задачей аккумулятора является подача необходимого количества электроэнергии и обеспечение стабильности напряжения, когда возрастает ее потребление. Ту же функцию аккумуляторные блоки выполняют в ночное время суток либо при недостатке солнечного света, когда фотопанели не работают.

Промежуточным звеном между солнечными панелями и аккумуляторным блоком служит контроллер. Он регулирует степень заряда аккумулятора, чтобы предотвратить их перезарядку либо снижение мощности ниже определенного уровня, что приведет к утрате стабильности работы солнечной электросистемы.

Последний важный узел схемы электроснабжения от солнечных батарей – это инвертор. Он необходим для преобразования постоянного тока, который подается от солнечных модулей к аккумуляторам, в переменный с напряжением в 220 вольт. Как известно, такой уровень напряжения необходим для работы большинства современных бытовых приборов.

Максимальная нагрузка и уровень среднего потребления энергии

На данный момент далеко не каждый сможет себе позволить поставить в своем загородном доме подстанцию, работающую от солнечной энергии. Тем не менее, планируя их установку, сначала необходимо выяснить, на какую пиковую нагрузку при включении бытовых приборов следует рассчитывать, а также какое среднее количество электроэнергии в сутки они потребляют.

Максимальный уровень нагрузки определяют, исходя из предельной мощности всех электроприборов, имеющихся в доме, чтобы при одновременном включении нескольких из них система в доме смогла справиться с нагрузкой.

Для определения среднесуточного потребления каждого из приборов, следует перемножить его мощность на время работы от сети в сутки. А общий расход энергии находим путем суммирования энергии от всех приборов в доме.

Определение общих показателей энергопотребления позволит распланировать эффективный расход солнечной энергии, генерируемой солнечными панелями. Кроме того, полученные цифры дают возможность выполнить расчет мощности солнечных батарей для дома, чтобы знать, какой аккумулятор нужно будет купить. Емкость аккумулятора напрямую влияет на его стоимость.

Расчет основных показателей - сколько нужно батарей и какой мощности

Прежде чем начинать выполнение расчетов, следует подготовить специальную таблицу, в которую будут заноситься полученные данные. Вертикальных граф должно быть 30 штук, а горизонтальных – по количеству бытовых приборов, используемых хозяевами.

Предварительный этап

В первом столбце будет указываться номер по порядку бытового прибора. Его название проставляем во второй колонке. Третьей графой проставляем мощность каждого из приспособлений. В следующих 24 столбиках необходимо проставить часы от 01 до 24.

В этих клеточках в виде десятичных дробей будем вносить такие данные:

  • числитель представляет собой период каждого прибора в течение конкретного часа (в десятичном выражении);
  • знаменателем проставляют индивидуальную мощность электроприбора (такой повтор облегчает процесс дальнейших расчетов).

Графа 28 предназначена для суммирования общего времени работы электроприбора в пределах суток. Следующая колонка содержит данные об энергопотреблении отдельного прибора за прошедшие сутки – эту цифру получают умножением периода работы на потребляемую мощность. В последней вертикальной графе записывают примечания, например результаты промежуточных расчетов.

Составляем спецификацию энергопотребления

Когда черчение таблицы завершено, можно приступать к составлению спецификации энергопотребления. В первой графе расставляем номера приборов. Их названия прописываем в следующем графе. Опытные люди советуют начинать составление таблицы с бытовыми приборами с первого помещения в доме, то есть прихожей. Затем последовательно вносят данные о всех остальных помещениях на этаже, двигаясь, по желанию, по или против часовой стрелки. При наличии верхних этажей, подход к занесению в таблицу оборудования будет аналогичным – последовательно, двигаясь в одном направлении. Обратите внимание, что в спецификацию необходимо внести осветительные приборы с лестничных пролетов и улицы.

Намного удобнее, если мощность каждого из приспособлений в 3 колонке вы будете проставлять параллельно с их названиями.

Следующие 24 столбца будут содержать числовые значения часа. Чтобы было удобнее вносить данные, их сразу разделяют пополам горизонтальной линией. Таким образом, получится числитель и знаменатель.

В эти клеточки отдельно по каждому прибору проставляют период его работы в виде десятичных дробей, заполняя только те, которые соответствуют времени суток, когда они использовались. Одновременно с этим заполняют и знаменатели каждой графы, указывая в них данные, взятые из третьей колонки.

По завершении заполнения всех клеточек с часами, начинают подсчет общего времени работы оборудования в течение суток, постепенно заполняя строки со всеми электроприборами. Эти данные вносят в 28 графу.

Колонка 29 заполняется после вычисления общего потребления электроприбора в течение суток. Оно определяется умножением рабочей мощности на период работы оборудования.

После того, когда все клеточки в таблице будут содержать конкретные данные, можно переходить к подведению итогов. Реальные нагрузки на каждый час суток определяют путем сложения значений знаменателей всех используемых в этот период электроприборов. Вертикальное сложение уровней потребления энергии в сутки по каждому из приборов, проставленных в графе 29, дает итоговое значение среднесуточного энергопотребления.

Количество энергии, которое потребуется для обслуживания самой системы на солнечных батареях для дома, на данном этапе в расчет не принимается. Его нужно будет учитывать в виде особого коэффициента во время окончательных расчетов.

Обработка данных и их оптимизация

При расчете солнечных батарей на дом стоит определить, каким образом они будут использоваться – в качестве основного источника питания или же резервного. В случае применения солнечных электростанций в качестве дополнительного питания, информация о почасовых нагрузках и среднесуточном потреблении энергии позволит использовать эти мощности более эффективно. Например, при перебоях с основным электричеством, энергоемкие бытовые приборы будут применяться минимальное количество времени, либо вовсе не будут включаться.

А вот в тех домах, где используется только электроэнергия от солнечных батарей, стоит обратить особое внимание на уровень почасовых нагрузок. При этом желательно применять электроприборы таким образом, чтобы предотвратить скачки энергопотребления в сторону минимальных или максимальных значений.

Чтобы сократить расходы на закупку оборудования для солнечных электростанций и обеспечить их бесперебойное, стабильное и длительное функционирование, очень важно равномерно распределить нагрузки в течение суток, исключить повышение мощности до пиковых значений или ее падение до минимума.

Например, при рациональном распределении нагрузки и эффективном использовании солнечной электроподстанции, можно сократить ежесуточное энергопотребление с 18 до 12 кВт/ч, а потребляемую мощность – с 750 до 500 Вт.

Аналогичным образом производится оптимизация потребления энергии от резервных солнечных батарей. Таким образом, можно будет избежать дополнительных расходов на приобретение аккумуляторов повышенной мощности.

Выбираем компоненты для солнечной электростанции

Для того чтобы наглядно проиллюстрировать расчет, сколько нужно солнечных батарей для использования их в качестве основного источника энергии, рассмотрим условный загородный дом в Рязанской области, в котором жильцы находятся с марта по сентябрь включительно.

Для расчета мы возьмем следующие показатели почасового потребления:

  • суммарное потребление энергии в сутки – 12 кВт/ч;
  • средний уровень нагрузки всех потребителей – 500 Вт;
  • максимальное значение нагрузки – 1200 Вт;
  • пиковый уровень нагрузки (+25 %) – 1200×1,25 = 1500 Вт.

Полученные данные будут использованы для определения необходимой емкости аккумуляторов гелиоэлектростанции.

Устанавливаем уровень напряжения для солнечных батарей

Чтобы понять, сколько дают энергии солнечные батареи, нужно определиться с уровнем их рабочего напряжения. Это значение всегда кратно 12 вольтам, поскольку такое напряжение характерно большинству аккумуляторов. Чаще всего используются инверторы, контроллеры и солнечные панели с напряжением в 12, 24 или 48 вольт.

Для систем с более высоким уровнем напряжения можно применять питающие кабели с меньшим сечением, что обеспечивает высокую надежность соединений.

В тоже время, аккумуляторы по 12 вольт, если они сломаются, можно заменять поочередно. Особенностью эксплуатации батарей с напряжением в 24 вольта будет необходимость замены узлов только попарно. В случае использования системы с напряжением в 48 вольт необходимо будет менять сразу 4 батареи, расположенных на одной ветке. Кроме того, при неосторожном обращении с батареями в 48 вольт можно получить удар электрическим током.

Рабочее напряжение электросистемы напрямую влияет на то, сколько дает солнечная батарея. Этот фактор учитывается при подборе необходимого оборудования.

Зависимость между мощностью инвертора и пиковыми нагрузками выглядит так:

  • 3-6 кВт – 48 вольт;
  • 1,5-3 кВт – 24 или 48 вольт;
  • до 1,5 кВт – 12, 24 или 48 вольт.

В рассматриваемом примере выбор между сложностями при замене аккумуляторов и надежностью электропроводки сделаем в пользу последнего. Уровень рабочего напряжения составит 24 вольта.

Оборудование батареи солнечными модулями

Мощность солнечной батареи определяется по такой формуле:

Рсм = (1000×Есут)/(к×Син), где

  • Рсм – мощность солнечной батареи – общая мощность солнечных модулей, Вт;
  • 1000 – постоянная светочувствительности фотоэлектрических преобразователей, кВт/м²;
  • Есут – требуемая суточная норма энергопотребления, кВт·ч, в данном случае – 18;
  • к – сезонный коэффициент, с учетом всех затрат – летом: 0,7; зимой: 0,5;
  • Син – величина инсоляции из таблицы (потока солнечной радиации), с учетом оптимального угла панелей, кВт·ч/м².

Величину инсоляции можно уточнить у местной метеорологической службы.

Требуемый уклон солнечных панелей определяется широтой местности:

  • в весеннее и осеннее время года;
  • в зимнее время года – плюс 15 градусов;
  • в летнее время года – минус 15 градусов.

В нашем случае, Рязанская область, располагается на 55-й широте.

С учетом того, что время выбрано с марта по сентябрь, оптимальным постоянным углом установки солнечных батарей будет 40 градусов относительно земли. При этом средняя суточная инсоляция Рязани в указанный период равняется 4,73.

С учетом имеющихся данных произведем расчет:

Рсм = 1000×12/(0,7×4,73) ≈ 3600 ватт.

При использовании 100 ваттных солнечных батарей нам понадобится 36 штук. Такое количество будет иметь массу приблизительно в 300 кг, а площадь они будут занимать в пределах 5×5 м.

Обустройство аккумуляторного энергоблока

Чтобы правильно подобрать аккумуляторы для солнечных батарей, необходимо учесть такие правила:

  1. Аккумуляторные батареи для электростанций на солнечной энергии должны иметь маркировку «SOLAR». Ни в коем случае нельзя использовать стандартные аккумуляторы для автомобилей.
  2. Мощность батарей и другие их рабочие характеристики должны быть одинаковыми, идеально, если все приборы будут из одной партии.
  3. Для установки солнечной батареи в частном доме необходимо выбрать теплое помещение. Максимальное количество энергии гелиостанция вырабатывает при температуре воздуха порядка 25 ℃. Если же температура воздуха опустится до -5 ℃, батарея будет работать всего на 50% мощности.

Например, при использовании аккумуляторной батареи с напряжением в 12 вольт и емкостью 100 А·ч, можно запитать оборудование общей мощностью в 1200 Вт, которая будет работать в течение часа. Однако в таком случае в конечном итоге батарея окажется полностью разряженной. Такого допускать ни в коем случае не стоит.

Примечательно, что долговечность аккумуляторов на солнечной энергии будет обеспечена лишь в том случае, если их не будут разряжать ниже 70 %, максимум – не ниже 50 %. Если взять усредненное значение, скажем, в 60 %, то можно расходовать по 720 Вт/ч на каждые 100 А·ч емкости аккумулятора (1200×60 %).

Перед тем как установить солнечные батареи в частном доме, их нужно зарядить на 100 % от стандартной розетки. Это нужно для того, чтобы солнечные батареи могли справляться с нагрузками в темное время суток, а также днем, если нет солнечной погоды.

В то же время, если установлено слишком много аккумуляторных батарей, они будут постоянно недополучать уровень заряда. Это пагубно скажется на их долговечности. Лучше всего, если установлено столько аккумуляторов солнечной электростанции, чтобы хватало для снабжения потребители энергии в течение 1 суток.

Вычислить необходимую общую емкость аккумулятора можно, найдя кратное между суточным потреблением энергии (12000 Вт) и энергозапасом (720 Вт/ч), умноженное на 100 А·ч:

  • 12000/720×100 ≈ 1600 А·ч.

Расчеты показали, что для бесперебойной работы солнечной подстанции необходимо либо 16 батарей по 100 А·ч, либо 8 по 200 А·ч, которые подключены последовательно-параллельно.

Подбираем контроллер

Контроллер для аккумуляторных батарей (АКБ) следует подбирать особенно тщательно. Дело в том, что по параметрам он должен быть совместим с солнечными модулями, а исходящее напряжение должно соответствовать мощности электрической подстанции – в рассматриваемом примере 24 вольта.

Качественный контроллер аккумуляторов должен справляться с такими задачами:

  1. Обеспечивать многоступенчатый заряд АКБ, что существенно увеличивает срок их эксплуатации.
  2. Осуществлять подключение и отключение солнечной батареи и АКБ в автоматическом режиме, в соответствии с уровнем заряда.
  3. Корректировка нагрузки между солнечными батареями и АКБ.

Хотя размеры контроллера невелики, этот компонент влияет на работу, как отдельного аккумуляторного блока, так и всей системы в целом.

Устанавливаем инвертор

Мощность инвертора должна быть такой, чтобы он мог выдерживать пиковые уровни нагрузки в течение длительного времени. Входящее напряжение такого блока должно быть равно внутреннему напряжению всей солнечной электроподстанции.

Чтобы не ошибиться с выбором, обратите внимание на следующие моменты:

  1. Частота и форма переменного тока. Чем ближе к параметру в 50 Гц, тем лучше.
  2. Эффективность устройства должна составлять не менее 90 %. В идеале, чем больше, тем лучше.
  3. Энергопотребление самого прибора. Это значение должно быть соизмеримо с общим количеством энергии, необходимой для функционирования системы. Показатель в 1 % считается идеальным.
  4. Может ли инвертор справляться с кратковременными нагрузками, двукратно превышающими заявленную мощность.

Стоит отметить, что если вы подберете инвертор со встроенным контроллером, это будет оптимальным вариантом. 

teplospec.com


Смотрите также